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Dissipative effects in electromagnetism on macroscopic scales are examined by coarse-graining the micro-
scopic Maxwell equations with respect to time. We illustrate a procedure to derive the dissipative effects on the
macroscopic scale by using a Green-Kubo type expression in terms of the microscopic fluctuations and the
correlations between them. The resulting macroscopic Maxwell equations are formulated within the general
equation for the nonequilibrium reversible-irreversible coupling �GENERIC� framework, accounting also for
inhomogeneous temperature.
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I. INTRODUCTION

The dynamics of matter can be described on different lev-
els of detail. For example, microscopic descriptions resolve
short length scales and fast processes. In principle, one can
follow the microscopic dynamics over very long times to
arrive at the behavior on the macroscopically relevant time
scales. However, doing so is often not desirable, and one can
learn significantly more by using a coarse-grained descrip-
tion. For example, the flow of water in a complex geometry
is usually studied not in terms of the dynamics of water
molecules, but rather in terms of the continuum equations of
hydrodynamics. This is so because key features of interest
emerge only on the length and time scales much larger than
the molecular ones. The intrinsic time scale for the relaxation
of inhomogeneities in the macroscopic velocity field is
closely related to the shear viscosity �. This material specific
property can either be determined experimentally on purely
macroscopic grounds. Another, conceptually very interesting
route goes via the so-called fluctuation-dissipation theorem
�1–4�, which establishes a relation between micro- and mac-
roscopic properties. In particular, the Green-Kubo formula
relates the shear viscosity to the correlations between fluc-
tuations of the microscopic shear stress, �xy, by way of

� =
V

kBT
�

0

�

��xy�t��xy�0��eqdt , �1�

with V the sample volume, T the absolute temperature, and
�¯�eq the equilibrium average. The integration range �0, � �
stands symbolically for an integration range much longer
than any microscopic relaxation time. However, it is implic-
itly assumed that this range is shorter than macroscopic time
scales, which implies that micro- and macroscopic time
scales are clearly separated. Relations of this type are fre-
quently used in molecular dynamics simulations to determine
macroscopic transport properties �3�, where transport coeffi-
cients are expressed in terms of two-time correlations of
current densities.

The motivation for the work presented here related to the
Maxwell equations rests on the following idea. The Green-
Kubo relation �1�, and generalizations thereof, not only tells
us how to relate microscopic fluctuations to macroscopic
transport coefficients, more fundamentally, it indicates that
microscopic fluctuations give rise to dissipative processes in
more coarse-grained descriptions. In view of electromagne-
tism, this serves as a strong motivation to believe that, e.g.,
fluctuations in the polarization and magnetization by way of
particle vibrations and fast spin dynamics must be observ-
able on macroscopic scales as dissipative processes. Al-
though the Maxwell equations belong to the most studied
differential equations in physics, they do not account for the
dissipative phenomena beyond ohmic resistance and the fre-
quency dependent imaginary parts of the permittivity and
permeability in the linear response regime. In view of the
above discussion, we anticipate that the electric �ohmic� re-
sistance is related to the fluctuations of the electric current of
the unbound charges. However, in addition also the bound
particles fluctuate, giving rise to fluctuations in the polariza-
tion and the magnetization. How those fluctuations give rise
to dissipative effects on the macroscopic scale is precisely
what we want to elaborate on in this paper.

Thermodynamics comes into play in the Green-Kubo re-
lation �1� by way of the absolute temperature T. In addition,
the occurrence of a “thermal” variable is also of fundamental
importance in a purely macroscopic model with dissipative
effects, since the latter lead to an entropy increase, and in
turn to a change in the thermal state. In contrast, the Maxwell
equations are usually taken as a set of isolated equations,
decoupled from the other macroscopic variables, e.g., tem-
perature and density. This means that the evolution of the
electromagnetic field is generally obtained in the approxima-
tion that these macroscopic variables have set values or, at
best, are given as functions of time. In order to obtain a
rigorous and reliable theory, one needs to include these mac-
roscopic quantities in the list of variables and to consider
their dynamics in conjunction with the time evolution of the
electromagnetic field. Only then one can capture the inter-
play between the thermodynamic behavior and the electro-
magnetic field, and dissipative effects in electromagnetism
can be addressed in a consistent manner.

To perform a thorough theoretical analysis of the interplay
between the thermodynamic properties and the electromag-
netic field is a demanding task, especially if one wants to
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account for dissipation effects beyond a linear response
theory. Liu and co-workers have incorporated dissipative ef-
fects into the Maxwell equations �5–11�. The resulting theory
describes the dynamics of macroscopic systems that are ex-
posed to electromagnetic fields and contain electric charges
and currents. In particular, the driving forces for the dissipa-
tive effects on the macroscopic scale have been established.
In the dynamic equations, the new dissipative terms occur as
an addition to the commonly used macroscopic Maxwell
equations when the system is out of equilibrium. The validity
of this theory was at first confined to the low-frequency
regime, but was later generalized to higher frequencies �11�.

In this paper the goal is to use the reversible Maxwell
equations to derive macroscopic Maxwell equations for dis-
sipative electromagnetism in a medium, valid also outside of
the linear response regime. As the guideline to complete this
task, the general equation for the nonequilibrium reversible-
irreversible coupling �GENERIC� formalism of nonequilib-
rium thermodynamics �4,12,13� is used for two reasons.
First, thermodynamic consistency of the macroscopic model
is ensured. Second, the formalism is equipped with a scheme
for temporal coarse-graining, the most important part of
which is concerned with the emergence of dissipative effects
upon coarse-graining, i.e., a generalization of the Green-
Kubo relation �1�. This scheme will be illustrated below spe-
cifically on the Maxwell equations in order to obtain the
macroscopic equations that possess the GENERIC structure.
These equations are then compared to the dissipative
Maxwell equations suggested by Liu �5�.

The paper is organized as follows. In Sec. II, the micro-
scopic and common macroscopic Maxwell equations are
briefly presented. The usual coarse-graining procedure and
its shortcomings are recapitulated. In Sec. III, a GENERIC
formulation of the Maxwell equations together with the
equation for the energy density is presented. We illustrate the
procedure to obtain, by temporal coarse-graining using
Green-Kubo-type expressions, the dissipative effects in the
time evolution equations for the macroscopic variables.

II. MICRO- AND MACROSCOPIC MAXWELL
EQUATIONS

The classical derivation of the macroscopic Maxwell
equations for the electromagnetic fields in a medium from
the microscopic ones,

ḃ = − � � e, � · b = 0, �2a�

ė =
1

�0�0
� � b −

1

�0
j, � · e =

1

�0
	 , �2b�

is often performed through spatial averaging �14�. Through-
out the paper we denote the partial time derivative by

Ȧ� �
�tA. The quantities �0 and �0 stand for the permittivity

and the permeability, respectively, in vacuum. Starting from
the microscopic Maxwell equations containing only fields e
and b, one separates the free from the bound parts of the
charge 	 and of the current density j. Upon spatial averaging,
the expressions for the bound parts of 	 and j are simplified

by introducing the polarization P and the magnetization
M. With E and B the spatially averaged electric field and
magnetic induction, respectively, the macroscopic Maxwell
equations can then be formulated conveniently as

Ḃ = − � � E, � · B = 0, �3a�

Ḋ = � � H − Je, � · D = 	e, �3b�

where one has introduced the electric displacement
D=�0E+P, assuming that quadrupole moments are negli-
gible, and the magnetic field H=B /�0−M. Doing so, the
source terms of the macroscopic Maxwell equations are
given by the averages of the free charge density and free
current density, 	e and Je, respectively. In addition, the evo-
lution equation for the energy density of the electromagnetic
field can be written in the form


̇em = − � · �E � H� − Je · E , �4�

where E�H is the Poynting vector.
The structure of the equations �3� imposes the interpreta-

tion that the field variables are D and B, the temporal equa-
tions are their time evolution equations, while the other two
represent the constraints that must be satisfied at all times.
The fields E and H then need to be expressed as some func-
tions of D and B in order to render equations �3� closed.
Such closing relations are known as constitutive equations
which contain the information about the medium, and are
usually considered as given in macroscopic electrodynamics.
The usual choice is to use linear relations between �E ,B� and
�D ,H�, valid if the electromagnetic field is sufficiently weak,
in order to obtain the properties of the permittivity � and
permeability � that describe the response of a medium on
the electromagnetic field. Then the real parts of the functions
���� and ���� express the oscillatory motion of the bound
charges and the imaginary parts describe dissipation. How-
ever, in many cases, like the passage of the laser beam
through a substance, or for a medium in a strong magnetic
field, the linear response theory is not valid anymore and one
needs to work in the regime of nonlinear electrodynamics,
with the consequence of losing all the simple relations.

A common constitutive relation concerns the current den-
sity. It is known that ohmic conductors satisfy the condition
Eeq=0 at equilibrium, and that in nonequilibrium situations
the force to relax D to equilibrium is proportional to E. Such
behavior is often expressed by Je=�E with conductivity �.
This interrelation suggests drawing the following analogy. In
stationary, equilibrium situations, with vanishing electric
current Je, one obtains from Eq. �3� the conditions

� � Heq = 0, � � Eeq = 0 . �5�

We therefore assume that in nonequilibrium situations on the
macroscopic scale there are forces to drive B and D towards
equilibrium with those forces being closely related to
��H and ��E with associated transport coefficients.
Conditions �5� have been obtained also by Liu by minimiz-
ing the total energy of the system under the constraints of the
nontemporal Maxwell equations � ·D=	e and � ·B=0 �5�.
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The commonly used macroscopic Maxwell equations �3�
can be obtained not only by spatial averaging �see, e.g., Ref.
�14��, which is also called “truncation” in �15�, but also by
ensemble averaging �15,16�. In both cases, only single time
properties are considered, while temporal correlations and
two-time ensemble averages are neglected. In the remainder
of this paper, we will thus refer to these two techniques as
“spatial” averaging, in contrast to temporal coarse-graining
which will be discussed in detail below. Neglecting coarse-
graining with respect to time to arrive at the spatially aver-
aged Maxwell equations �3� may be a valuable ansatz under
many circumstances �14�. However, it is also known that
coarse-graining with respect to space and time can lead to a
better understanding, and some aspects of a model emerge
clearly only on longer time scales �4,17�. Such an example is
hydrodynamics, where the shear viscosity given by Eq. �1�
and other transport coefficients in the Navier-Stokes equa-
tions arise at the continuum level of description, but are ab-
sent in a molecular model. Therefore we will examine spe-
cifically the effect of coarse-graining in time by using Green-
Kubo-type expressions to learn more about dissipative
effects in electromagnetic systems with nonlinear constitu-
tive relations. In order to obtain a closed set of the macro-
scopic time evolution equations for electromagnetism in a
medium, a scheme for temporal coarse-graining of the “spa-
tially averaged” Maxwell equations is presented following
the GENERIC formalism �4,12,13�. The full coarse-graining
procedure, together with the expressions obtained for the ad-
ditional dissipative terms, is presented in the
following sections.

III. GENERIC FORMULATION

A. Formalism

The main points of the GENERIC framework of nonequi-
librium thermodynamics �4,12,13� can be summarized
briefly in the following way. In analogy to equilibrium
thermodynamics, major importance comes to, first, choosing
a complete set of variables x, which describes the situation
of interest to the desired detail. The reversible contributions
to the time evolution for this set of variables, ẋ	rev,
is formulated in close reference to classical Hamiltonian
mechanics. In particular, it is related to the energy
gradient by way of a Poisson operator L, i.e.,
ẋ	rev=L · ��E /�x�. The Poisson bracket associated to L, given
by 
A ,B�= ��A /�x ,L ·�B /�x� with appropriate scalar prod-
uct �¯�, must be antisymmetric and satisfy the Jacobi iden-
tity, which are both abstract features that capture the nature
of reversibility. In order to formulate the irreversible part of
the dynamics one is motivated by the reversible part. For the
reversible dynamics, the energy plays a distinct role. First, it
is a conserved quantity for closed systems and, second, it
drives the reversible dynamics. In parallel, for irreversible
dynamics entropy is a fundamentally important quantity,
which must not decrease for closed systems. In analogy to
the reversible dynamics, it is assumed in the GENERIC
framework that the irreversible contributions to the time evo-
lution of x, ẋ	irrev, is driven by the entropy gradient, i.e., that

it is of the form ẋ	irrev=M · ��S /�x�, with M a generalized
friction matrix. The latter is required to be �Onsager-Casimir�
symmetric, and contains transport coefficients and relaxation
times associated to the corresponding dissipative effects. The
condition that the friction matrix is positive semidefinite

ensures that Ṡ0 is fulfilled.
In summary, the time evolution of x can be expressed in

terms of four building blocks E, S, L, and M as

ẋ = L�x� ·
�E�x�

�x
+ M�x� ·

�S�x�
�x

. �6�

The two different contributions to the time evolution, revers-
ible and irreversible, are not independent. Rather, they are
interrelated by the two degeneracy requirements

L�x� ·
�S�x�

�x
= 0, M�x� ·

�E�x�
�x

= 0 . �7�

The first condition expresses the reversible nature of the
L contribution to the dynamics, demonstrating the fact
that the reversible dynamics captured in L does not affect
the entropy functional. The second one expresses the conser-
vation of the total energy of an isolated system by the
irreversible contribution to the system dynamics captured in
M.

A particular feature of the GENERIC is that it is appli-
cable on different levels of description, including reversible
Hamiltonian mechanics and dissipative macroscopic field
theories. The corresponding four building blocks obviously
differ between the different levels. However, there are ab-
stract procedures to relate them. Most importantly, the fric-
tion matrix on a coarse-grained level can be expressed in
terms of the more microscopic dynamics �4�. This procedure
helps to understand how dissipative effects can arise in
coarse-grained descriptions. It is particularly this issue that
we want to address in relation to the Maxwell equations of
electrodynamics.

B. Choice of variables, energy, and entropy functionals

First, we identify a natural set of variables for a dynamic
description of dissipative electromagnetism. In order to de-
scribe a body in an electromagnetic field, we make the local
equilibrium assumption, so that temperature, internal energy,
and entropy densities are defined at each point of the non-
equilibrium system. Although one is free to choose any of
these three variables for describing the “thermal” state of the
body, it will become clear below that it is particularly useful
to choose the energy density 
, since it is the density of a
variable which is conserved for a closed system. The energy
density 
 stands for the total energy density inside the system
volume, consisting of both the internal energy of matter and
the energy of the electromagnetic field. As far as the vari-
ables describing the electromagnetic state are concerned, we
keep in mind that our primary interest is in the effect of
coarse-graining the Maxwell equations with respect to time.
Hence we use the already spatially averaged fields D and B
as used in the temporal Maxwell equations in Eq. �3�. Since
our focus here is on the temporal coarse-graining and on
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constructing the dissipative effects in a macroscopic formu-
lation of electromagnetism, we consider only bodies at rest
to avoid additional complexity, i.e., we do not include the
velocity field in the set of variables. This restriction, in turn,
also means that the mass density is a constant, as one can
easily infer from the mass balance equation. In other words,
we restrict our attention to materials for which the volume
changes are negligible compared to the other effects of inter-
est, namely materials with vanishingly small isothermal
compressibility and thermal expansion coefficient. The full
set of variables is thus given by x= �
 ,D ,B�. The total en-
ergy and entropy of the system, expressed in terms of these
variables, are given by the functionals

E =� 
d3r , �8a�

S =� s�
,D,B�d3r . �8b�

The functional derivatives of E and S will be needed further
below for the calculation of time evolution of variables x by
using the general evolution equation �6�. In order to connect
the expressions for these functional derivatives to known
quantities, one refers to the Gibbs thermodynamic relation.
The latter gives the change in the energy density 
 of a
thermally isolated medium at rest in the form of the total
differential

d
 = Tds + E · dD + H · dB , �9�

under the assumption of local equilibrium, where the fields E
and H, as well as the temperature T, are given as the partial
derivatives of the energy density 
 with respect to the appro-
priate variables. The first term on the right side in Eq. �9� is
identical to the ordinary thermodynamic relation for the in-
ternal energy density in the absence of the electromagnetic
field and for a constant mass density. The last two terms
represent the change of the energy density due to changes in
the electromagnetic fields. The form of these two terms is
well-known from the standard textbooks on electrodynamics
�14,18�, where the total electromagnetic energy increment is
given as a volume integral over the increments �D and �B
multiplied by E and H, respectively. Relation �9� is also in
agreement with the total energy density used in Ref. �19� for
a system at rest. We point out that the precise form of the
energy density 
 of the system is not required below for the
derivation of the macroscopic Maxwell equations in the
GENERIC form.

The functional derivatives �E /�x and �S /�x are now ob-
tained by reordering Eq. �9� in terms of the entropy total
differential, and calculating the appropriate partial deriva-
tives therefrom. One finds the following expressions needed
for the GENERIC time evolution equation �6�:

�E

�x
= �1

0

0
 , �10a�

�S

�x
=

1

T� 1

− E

− H
 . �10b�

C. Reversible dynamics

The reversible contribution to the time evolution of the
variables x= �
 ,D ,B� is related to the energy gradient �E /�x
by way of the Poisson operator L. At this stage, we point out
that the effects arising through coarse-graining in time by
using the Green-Kubo formula are completely comprised in
the friction matrix M, i.e., in the irreversible part of the time
evolution. Correspondingly, temporal coarse-graining does
not affect the reversible part of the time evolution of the
variables x. Therefore the Poisson operator

L = �L

 L
D L
B

LD
 LDD LDB

LB
 LBD LBB
 �11�

can be built up from the already established Maxwell equa-
tions �3� and the adequate evolution equation for the total
energy density, given only by the first term in Eq. �4� for a
medium at rest.

We approach the construction of L in the following man-
ner, having in mind that the reversible contributions are of
the form L · ��E /�x�. Since only the first element of the vec-
tor �E /�x is nonzero, Eq. �10a�, terms LD
 and LB
 must
reproduce the time evolution equations �3�. The antisymme-
try of L is then used to specify the elements L
D and L
B.
With this, the 
-component of the degeneracy requirement
L · ��S /�x�=0 can be satisfied by choosing L

 accordingly.
Notice that this term is then also in consistence with the time
evolution for 
, and it is antisymmetric as well. The other
two components of the degeneracy condition can be fulfilled
by choosing LDB=��, LBD=−��, and LDD=LBB=0. In
summary, one obtains the Poisson operator

L = �E · � � H − H · � � E − H · �� E · ��

� � H 0 ��

− � � E − �� 0
 ,

�12�

with all derivative operators acting on everything to the
right, i.e., also on functions multiplied to the right side of the
operator L. At this point we mention that, in general, the
symbol “·” in Eq. �6� implies not only summation over dis-
crete indices. If field variables are involved the operators L
and M are written in terms of two space arguments �r ,r��,
and an integration over r� must be performed when multi-
plied with a function of r� from the right. However, in the
case of the field equations being local, one can express L and
M in terms of a single variable r only �4�, and no integration
is implied when these operators are multiplied from the right.
Such single variable notation is used for the Poisson operator
�12�. However, in case of the friction matrix M, discussed in
the next section, it will be beneficial to keep the general form
in terms of r and r�.
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The reversible time evolution of the variables x as
obtained from L ·�E /�x takes the form


̇rev = − � · �E � H� , �13a�

Ḋrev = � � H , �13b�

Ḃrev = − � � E , �13c�

in accord with Eq. �3�.
We note here that the lower-right 2�2 block matrix

in L, Eq. �12�, describing the electromagnetic part of
the system, has been used previously by Marsden and
Ratiu in Ref. �20�. Therein, it was given in terms of
a Poisson bracket at which we can arrive by using

F ,G�=���F /�x� ·L · ��G /�x�d3r. In our work, their Poisson
bracket is embedded in a thermodynamic formulation with
a thermal variable 
.

The degeneracy requirement and the antisymmetry of the
Poisson operator are satisfied by construction. For the Jacobi
identity, it is useful to observe that in our system the time
evolution of the entropy density s�
 ,D ,B� has no reversible
contributions. Since the transformation of variables does not
affect the Jacobi identity, we choose to prove the Jacobi
identity in the set of variables x�= �s ,D ,B�, in which the
Poisson operator L� takes a much simpler form. Namely,
only two elements, LDB� and LBD� , are nonzero, and L� coin-
cides with the Poisson bracket in Ref. �20�, for which the
Jacobi identity is fulfilled. With this, the Poisson operator L
is completely constructed.

D. Friction matrix obtained from microscopic fluctuations

Coarse graining with respect to time from one level of
description �L1� to another one �L2� in principle leads to two
kinds of irreversible effects on the coarser level. First, dissi-
pative effects on level L1 reappear on level L2. Second, cer-
tain effects that are slower than the time resolution on level
L1 and faster than the time resolution of L2 will be ex-
pressed as rapid fluctuations on level L2, and hence emerge
as irreversible effects on that coarser level of description. It
is this latter kind of irreversible effects after coarse-graining
which we concentrate on. The coarse-graining procedure is
captured in the following five steps and illustrated for the
case of dissipative electromagnetism.

First, we express the friction matrix M, which captures
the dissipative contributions to the GENERIC evolution
equation �6�, in terms of a Green-Kubo-type expression. The
matrix M can be calculated from the microscopic description
by a generalization of the Green-Kubo relation for the vis-
cosity �1�. If ẋf denotes the fluctuations on all components of
x, we write �4�

M�r,r�� =
1

kB
�

0

�

dt�ẋf�r,t�ẋf,T�r�,0�� , �14�

which can be expressed alternatively, in component notation,
as

�1 + 
�xi�
�xk��Mik�r,r�� =
1

kB�
��xi

f�r� � xk
f�r��� , �15�

with 
�xj�= ±1 depending on the parity of xj under time-
reversal. Here, � is an intermediate time scale separating the
slow degrees of freedom �on the coarser level L2� from the
fast ones �on the finer level L1�. The quantity �xj

f�r� is given
by �xj

f�r�=�0
�ẋj

f�r , t�dt, and the brackets �¯� indicate the
average over an ensemble of microscopic trajectories consis-
tent with the slow macrostate x over the whole time interval,
see pages 357 and 358 in Ref. �4� for more details. The
superscript T in Eq. �14� denotes the usual matrix transpose.

Second, for formulating the form of the fluctuations ẋf the
type of the variables x is important. Specifically, choosing
densities of �conserved� extensive variables is particularly
useful. Doing so is in close analogy to the common proce-
dure in the theory of fluctuations in classical thermodynam-
ics �1,21�. Furthermore, the Green-Kubo relation �1�, and
similar relations for the thermal conductivity and diffusion
coefficient, indicate that current-current correlations are
quantities of fundamental importance. For example, the
stress tensor is the current of momentum. Current densities
play a major role in the formulation of conservation laws in
the form of field equations for density variables of extensive
quantities, e.g., internal energy density and momentum den-
sity. Hence from this perspective it is tempting to use density
variables in the set x. How this can be exploited further is
discussed in the third step below. In our example, the energy
density 
 is hence a good variable, in contrast to the tem-
perature T, or the �not conserved� entropy density s. Further
dissipative processes we are considering here originate from
the fluctuations in the particle positions and spins. Thus fluc-
tuations in D and B arise due to fluctuations in densities of
extensive variables, namely in the polarization P and the
magnetization M.

Third, we make an ansatz for the structural form of the
fluctuations. We assume that the evolution equations for the
fluctuations are similar in structure to their macroscopic
counterparts, in the spirit of Onsager’s regression hypothesis.
This hypothesis states that the fluctuations about the equilib-
rium state decay, on the average, according to the same laws
that govern the decay of macroscopic deviations from equi-
librium �2–4�. In view of the first component of ẋf we note
that Eq. �4� represents the change in electromagnetic energy
only, while the corresponding equation for the thermal en-
ergy, 
th, of the body will be of the form 
̇th=Je ·E−� ·Jq
with heat flux Jq, such that the total energy, i.e., the integral
of 
=
em+
th, is conserved. Approximating the fluctuating
contributions by white noise leads to expressions for �xf of
the form

�xf = �− � · �W�q� + E � W�H� + W�E� � H�
� � W�H� − W�j�

− � � W�E�  , �16�

where all W are �small� increments of Wiener processes,
which are integrals of white noise over a time interval �. The
superscripts to the Wiener processes indicate their physical
origin.
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Fourth, by specifying the second moments of the Wiener
processes, and all correlations between them, the construc-
tion of the M matrix is completed. We assume that all W are
decorrelated because of the difference in the underlying mi-
croscopic mechanisms, but that Wq has a nonzero correlation
only with the electric current fluctuations Wj, which will
give rise to the thermoelectric effects. Hence we write the
following relations:

�W����r�W����r��� = 2kB���r − r��C�����r� , �17�

with � ,�� 
q, j ,E ,H�, where the nonzero C����, i.e., C�qq�,
C�jj�, C�EE�, C�HH�, and C�qj��C�jq�,T, represent the correlation
functions, with implicit r-dependence, e.g., through tempera-
ture. Note that we have assumed only local correlations
between the Wiener processes, i.e., between the fluctuations.
Hence we are dealing with a local field formulation.
However, nonlocal effects can be included if so desired.

In the fifth and final step, the friction matrix M is calcu-
lated. Using the fluctuations �16� in conjunction with the
correlations �17� we calculate the Green-Kubo relations for
the elements of the matrix M�r ,r�� by way of Eq. �15�. The
final result for the friction matrix is

M�r,r�� = �M

 M
D M
B

MD
 MDD 0

MB
 0 MBB
 , �18a�

with

M

 = � · C�qq��r� · �����r − r���

+ � · E�r� � C�HH��r� · ��� � E�r����r − r���

+ � · H�r� � C�EE��r� · ��� � H�r����r − r��� ,

�18b�

MDD = − � � C�HH��r� · �����r − r��� � + ��r − r��C�jj��r� ,

�18c�

MBB = − � � C�EE��r� · �����r − r��� � , �18d�

M
D = � · C�qj��r���r − r��

+ � · E�r� � C�HH��r� · �����r − r��� � , �18e�

MD
 = C�qj�,T�r� · �����r − r���

− � � C�HH��r� · ��� � E�r����r − r��� , �18f�

M
B = � · H�r� � C�EE��r� · �����r − r��� � , �18g�

MB
 = − � � C�EE��r� · ��� � H�r����r − r��� , �18h�

where it is understood that contractions · and cross products
� are executed in the order of occurrence from the right to
the left.

Given the expression �18� for M, it is straightforward to
show that the degeneracy condition M · ��E /�x�=0 is indeed
satisfied. The origin of this result goes back to the ansatz for
the fluctuations �xf in Eq. �16�. Their specific form ensures

that the fluctuations occur on a submanifold of constant
energy, as can be shown readily by

� �xf,T ·
�E

�x
d3r = 0, �19�

as required by the GENERIC. Equation �19� is fulfilled al-
ready by writing the first component of ẋf, namely the fluc-
tuations in the total energy density, as in Eq. �16�, which
requires it to be the divergence of a vector field. It is then
straightforward to show that Eq. �19� is satisfied if boundary
terms can be neglected.

If the dissipative matrix M�r ,r�� is applied to the entropy
gradient �S /�x�r��, including an integration over r�,
one gets the irreversible contributions to the time evolution
equations. Using the definitions

E* =
1

T
C�EE� · �� � H� , �20a�

H* = −
1

T
C�HH� · �� � E� , �20b�

Je
* = C�jj� ·

E

T
+ C�qj�,T · �

1

T
, �20c�

one obtains for the irreversible part of the time evolutions of
D and B

Ḋirr = � � H* − Je
*, �21a�

Ḃirr = − � � E*, �21b�

where all functions are evaluated at r. We recognize in

Ḋirr the ohmic conduction C�jj�, while C�qj� represents the
thermoelectric coupling �1�.

E. Final set of evolution equations

The final electromagnetic time evolution equations can be
conveniently written in the following way. Combining the
reversible �13� and irreversible �21� contributions to the time
evolution equations of the fields D and B, the resulting tem-
porally coarse-grained Maxwell equations differ from Eq. �3�
in that the fields E, H, and Je in Eq. �3� have to be replaced
by E+E*, H+H*, and Je+Je

*, respectively. The additional
fields E*, H*, and Je

* give rise to the irreversible contribu-

tions to Ḋ and Ḃ. They are proportional to the quantities
��H, ��E, E, and �T, as expected from conditions �5�
and the discussion in Sec. II, and represent the nonequilib-
rium forces that tend to restore equilibrium. We mention that
the full macroscopic Maxwell equations obtained here can be
used to derive expressions for the complex permittivity ����
and permeability ���� when examined in the linear response
regime �6,8�.

The frequently considered balance equation for the energy
density can be obtained from Eq. �13a� and the result of the
application of M�r ,r�� to the entropy gradient �S /�x�r��,
namely,
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̇ = − � · �E � H�

− � · �E � H* + E* � H + C�qq� · �
1

T
+ C�qj� ·

E

T
� .

�22�

The first term on the right side, which is the divergence of
the well-known Poynting vector, represents the reversible

part of the time evolution equation, while the second term is
the irreversible part, describing the heat conduction �through
C�qq�� and the Peltier effect �through C�qj��, as well as a modi-
fication of the electromagnetic energy flux, i.e., of the Poyn-
ting vector, due to the additional fields E* and H*. This
modification of the energy flux was found also by Liu �7,9�.

For the time evolution of the entropy density s one can
write, using the chain rule and rearranging the expression,

ṡ = − � · � 1

T
C�qq� · �

1

T
+

1

T
C�qj� ·

E

T
� +�

�
1

T

E

T

1

T
�� � E�

1

T
�� � H�

 ·�
C�qq� C�qj� 0 0

C�qj�,T C�jj� 0 0

0 0 C�HH� 0

0 0 0 C�EE�
 ·�

�
1

T

E

T

1

T
�� � E�

1

T
�� � H�

 . �23�

The central matrix of the last term is positive semidefinite as
can be seen after inserting the microscopic expressions for
the correlation functions �17�, and therefore the entropy pro-
duction rate is indeed non-negative. The obtained entropy
production rate corresponds to the one proposed by Liu in
�5,6�.

IV. DISCUSSION AND CONCLUSIONS

Coarse-grained dissipative Maxwell equations of electro-
magnetism have been obtained and examined from the per-
spective of nonequilibrium thermodynamics by using the
GENERIC formalism. We have illustrated a scheme to relate
the dissipative effects on the macroscopic scale to the fast
microscopic fluctuations in the polarization and magnetiza-
tion in the spirit of a generalized fluctuation-dissipation
theorem. In particular, the study is applicable also to materi-
als having nonlinear constitutive relations between �E ,B�
and �D ,H�. It emerged clearly that the difference between
spatial and temporal coarse-graining is of fundamental im-
portance. On the one hand, the usual procedure of averaging
the microscopic Maxwell equations only spatially �or by
single-time ensemble averages� leads to terms equivalent to
the reversible contributions in the GENERIC formulation,
L · ��E /�x�. On the other hand, coarse-graining the spatially
averaged Maxwell equations further with respect to time
leads to new irreversible effects captured in terms of
M · ��S /�x�, as shown here. The friction matrix M has been
related to two-time correlations of fast processes on the finer
level of description. Using the Green-Kubo expression �14�,
the correlations of microscopic fluctuations give rise to dis-
sipative processes such as ohmic currents, the thermoelectric
effect, and to other irreversible contributions to the electric
and magnetic fields.

In the above investigations, the following points have to
be highlighted. First, we presented an illustration of the
coarse-graining procedure in order to obtain the structure of
fluctuations and, in turn, the structure of the dissipative ef-
fects in electromagnetism. Second, the identification of cur-
rent densities occurring in ẋf was of fundamental importance,
since correlations between them lead to the new dissipative
processes on the macroscopic scale. To aid the relation be-
tween the Green-Kubo-type expression for M �Eq. �14�� and
the correlations between current densities, it has proven use-
ful to choose density variables of extensive quantities in the
set x. Using Onsager’s regression hypothesis, the evolution
equations of the fluctuations takes the form of conservation
laws, including fluctuating current densities. We point out
that the correlations �17� are similar in spirit to the Green-
Kubo relation �1�, in the sense that they define transport co-
efficients. In contrast, the expression for M �Eq. �14�� in
conjunction with the entropy gradient leads to the full form
of the dissipative processes. The third point concerns the
details behind the correlations �17�. In order to specify the
dissipative processes beyond their structure, one needs to
discuss in more detail the physics behind the correlation ma-
trices C��, with �, �� 
q, j ,E ,H�. That is, the transport co-
efficients appearing in the final expressions through C�� can
be obtained, e.g., along the lines of Felderhof �22�, or via
molecular dynamics simulations, or be derived based on ex-
plicit expressions for the microscopic fluxes and the correla-
tions between them �23�.

The scheme of temporal coarse-graining for obtaining the
macroscopic Maxwell equations differs from Liu’s �5,6�,
who started by making an ansatz for the entropy production
rate. However, both procedures lead to identical modifica-
tions of the Maxwell equations, and also the energy equation
�22� is in agreement with the corresponding relations in Ref.
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�5,6�. The obtained Maxwell equations and extensions of
them are successfully applied to the problems of nematic
liquid crystals �5,6�, colloidal magnetic and electric fluids,
and ferrofluids �7–9�. In nematic liquid crystals, the dissipa-
tive couplings between the new thermodynamic forces
��E and ��H with the additional thermodynamic forces
specific for this system are permitted and are equipped with
transport coefficients, thus being valid also in the case of the
oscillatory instabilities, when usually employed static
Maxwell equations no longer hold �5,6�. Liu’s equations
for ferrofluids also give rise to the dissipative forces that
account for the special spin-up behavior of ferrofluids under
a rotating external field �7–9�.

A cross relationship, similar to the one suggested by Liu
�5�, occurred in the dissipative terms �21� obtained by us:

C�HH� in Ḋirr accounts for the correlations of the fluctuations
in magnetization, i.e., the magnetization relaxation time, and

C�EE� in Ḃirr accounts for the correlations of the fluctuations

in polarization, i.e., the polarization relaxation time. This is
the consequence of the nature of Maxwell equations and of
the mutual dependence of the electric and magnetic fields. It
is naturally obtained by the form �16� for the increments in
fluxes �xf.

Aspects, different from the ones discussed here, of dissi-
pative effects in electromagnetism and of linking electro-
magnetism with hydrodynamics can be found in Refs.
�1,19,24�. Decomposition of the electromagnetic fields, in
particular polarization and magnetization, into the slow and
fast parts has been considered by Felderhof and Kroh �19�. In
this way they extended the irreversible thermodynamics ap-
proach used by de Groot and Mazur �1� for the hydrodynam-
ics of magnetic and dielectric fluids in interaction with the
electromagnetic field. In a subsequent paper �24�, Felderhof
studied semirelativistic hydrodynamic evolution equations
for a medium with polarization and magnetization.
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